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Abstract—This paper deals with the problem of estimating av-
erage signal-to-noise ratio (SNR) for a communication system em-
ploying non-coherent binary frequency shift keying (NCBFSK)
over fading channels and white Gaussian noise (AWGN). The
maximum likelihood (ML) estimator and one using data statistics
have been derived and simulated for various scenarios including
data-aided (DA), non-data aided (NDA) and joint estimation
using both the data and pilot sequences. We also derive the
Cramer-Rao bound (CRB) for the estimators. The results show
that for a particular region of interest (e.g. high SNR or low
SNR) and depending upon the availability of pilot sequence,a
particular SNR estimation schemes is suitable.

I. I NTRODUCTION

Estimates of signal-to-noise ratio (SNR) are used in many
wireless receiver functions, including signal detection,power
control algorithms and turbo decoding etc. The motivation for
the study reported here is that SNR estimation is a way for
a receiver to determine if it is near the edge of the decoding
range of its source, and therefore, in a preferred location to
participate in a cooperative transmission [1-2]. Furthermore,
if the radios are energy constrained, e.g., if they are in a
sensor network, non-coherent demodulations may be desired
to reduce circuit consumption of energy. Therefore, in this
paper, we consider the estimation of average SNR in an FSK
non-coherent demodulator, over a Rayleigh fading channel.

Several authors have attacked the problem of estimating
SNR for binary phase shift keying (BPSK) and frequency
shift keying (FSK). For example, [3] compares a variety of
techniques for SNR estimation in AWGN for M-PSK signals.
Many approaches also include the channel effects such as
multipath fading and address the issues of SNR estimation
for fading channels for BPSK e.g., in [5-7]. FSK enables a
simple receiver design that employs envelope detection [8].
In [9], the authors have estimated the SNR for non-coherent
binary FSK (NCBFSK) receiver, assuming unity noise power
spectral density. However, in implementations, noise power
must also be estimated. In this paper, we derive two types of
estimators of SNR, a maximum likelihood estimator (MLE)
and an estimator that uses block statistics, such that neither of
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them assume knowledge of noise power. [9] derives the SNR
estimate for pilot and data symbols separately. We provide ML
versions of partially data-aided (PDA), non-data aided (NDA),
joint PDA-NDA, and fully data-aided (FDA) estimators for
SNR. The PDA approach uses only the training sequence for
estimation while the NDA approach does blind estimation
using the entire sequence. The joint PDA-NDA uses all the
information, operating blindly on the non-training part ofthe
sequence. The FDA estimator uses the detected data as training
sequence for SNR estimation and is reasonable in a multi-
hop broadcast application, where every node must decode the
entire message. However, the detected data are all assumed to
be correct in the paper regardless of the value of SNR.

The rest of the paper is organized as follows. In the next
section, we describe the system model and the notations used
for the BFSK case. Section III deals with the derivations
of the SNR estimators, which includes three sub-cases for
MLE and also the estimator using data statistics. Then we
will derive the CRB and in Section V, we will discuss the
simulation results for various estimators and overall estimator
performance in terms of mean-squared error and CRB. The
paper then concludes in Section VI.

II. SYSTEM MODEL

Consider a communication system employing BFSK mod-
ulation. From [9], the received signal, for the BFSK case, is
given as

vi = siαi + ni (1)

where each ofvi, si, andni are real vectors with a dimension
of 2 × 1, and si is given as[1 0]

T or [0 1]
T with equal

probability. For the sake of simplicity, we assume that the
constellation symbol energy is unity so that the total power
of the signal is given asE

{

α2
}

= S/2, whereα is a zero
mean fading coefficient drawn from a Gaussian distribution.
Similarly, the noise is also a Gaussian random variable with
zero mean and varianceN/2, thus the SNR is given byγ =
S/N . si, αj , andnk are assumed to be independent of each
other for anyi, j andk. The all-real signal model follows from
the temporary assumption of a coherent receiver. Our interest
is to find the estimate of SNR using the observed data vector



{vi}k
i=1. For the estimation schemes considered, we assume

that that there areg pilot symbols andl data symbols so that
the total packet length isk = g+ l. Throughout the paper, we
assume perfect timing recovery at the receiver.

III. E STIMATION TECHNIQUES

As mentioned previously, we will derive ML estimation for
three cases, namely PDA, NDA and joint PDA-NDA. Another
approach is using the statistics of observable data, which we
call Estimation using Data Statistics (EDS).

A. Partially Data Aided MLE

Without the loss of generality, theg pilot symbols are set
to [1 0]

T . The probability density functions (PDFs) of the
received symbolsvi = [xi yi]

T , are given as

px(xi) =
1√

π
√
S +N

exp

(

− x2
i

S +N

)

(2)

and
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√
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)

. (3)

The joint pdf ofv is given as

pv(vi) =
1

π
√
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√
N
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i
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)

. (4)

Thus the log-likelihood distribution ofg received symbols is
given as

ΛPDA = − g lnπ − g

2
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lnN
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.
(5)

To find the MLE of SNR,̂γ, we use the property that the ML
estimate of the ratio of two parameters (S andN here), is
the ratio of the individual ML estimates of the two parameters
[10]. Thus using this property, the MLE of SNR can be written
as

γ̂ =
ŜML

N̂ML

(6)

Thus by differentiating(5) with respect toS and N , and
setting the derivatives equal to zero results in
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− 2
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and

N̂ =
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y2
i

)

. (8)

Thus the MLE of the SNR using the pilot sequence is

γ̂PDA =

∑

g x
2
i −

∑

g y
2
i

∑

g y
2
i

. (9)

B. Non Data-Aided MLE

Assuming equal prior probabilities of transmitted symbols,
the PDF of the received symbols is given as

pv(v) =
1

2π
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(10)

Using the fact that

exp (x1) + exp (x2) = 2 exp

(

x1 + x2

2

)

cosh

(

x1 − x2

2

)

,

where cosh(.) is the hyperbolic cosine function, the log-
likelihood function fork received symbols, is given as

ΛNDA = − k

2
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(11)

The partial derivatives of(11) with respect toS and N
are given in (12) and (13) (at the bottom of next page),
respectively, whereψ =

x2

i
−y2

i

2
S

N(S+N) . An exact solution to
(12) and(13) is difficult to obtain because of the non-linearity
of thetanh(.) function. It can be observed thattanh(x) ≈ +1
whenx > 0 and tanh(x) ≈ −1 whenx < 0. Thus using the
high SNR approximation S

S+N
≈ 1 for S >> 1, hyperbolic

tangent function can be approximated to a signum function.
Putting (12) and (13) equal to zero, we get
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and
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Thus the estimate of SNR is given as

γ̂NDA =
2
∑k

i=1 |x2
i − y2

i |
∑k

i=1 (x2
i + y2

i ) −∑k
i=1 |x2
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i |
. (16)

C. Joint Estimation using pilot and data symbols

Considerg pilot symbols andl data symbols, so that the
total packet is of lengthk = g + l. Assuming independent
received symbols, the joint PDF is the product of PDFs
resulting from pilot and data symbols. Thus the log-likelihood



function from the joint PDF is given as

Λjoint = − k
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Using similar approximations as done in the previous section
and taking partial derivatives with respect toS andN and
setting them equal to zero result in the estimate of SNR as

γ̂joint =
2
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D. EDS Approach

Extending the BPSK approach used in [5] for BFSK, we
define a2×2 matrixZ which is determined using the observed
data statistics, given as

Z = (E|vi|) (E|vi|)T (
E
{

vivT
i

})

−1
, (19)

whereE|v| = [E|x| E|y|]T . Sincevi = [xi yi]
T , wherex

andy are mutually uncorrelated, thus the autocorrelation ofv
is a diagonal matrix given as

E
{

vivT
i

}

=

[

1
4 (S + 2N) 0

0 1
4 (S + 2N)

]

. (20)

The method proceeds from the observation that if we have
a variable X which follows a Normal distribution with zero
mean and varianceσ2, the absolute value|X | follows a half-
Normal distribution which has a mean

√

2/πσ. Using this fact
and that|x| and |y| are identically distributed, we have
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(21)

and

(E|ζ|)2 =
N

4π

[

γ + 2 + 2
√

1 + γ
]

. (22)

ThusZ turns out to be a matrix with all elements being equal
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Fig. 1. Approximation of SNR in EDS approach

and is expressed asz12, where12 is a2×2 matrix of all ones
andz is given as

z =
(E|ζ|)2
E {ζ2} ζ ∈ {x, y} . (23)

After putting in the values from(20) and (22), z is given as

z =
γ + 2 + 2

√
1 + γ

π(2 + γ)
. (24)

In practice, we replace the expectations in(19) with the
corresponding block averages to compute the SNR estimate.
Figure 1 shows the relationship between computed z for
various values of SNR. Since the actual curve is highly steepin
the higher SNR region, it is difficult to obtain a curve fitting
for computing the estimates of SNR. Thus using high SNR
approximationγ+1

γ+2 ≈ 1, the approximate relationship between
z andγ̂ is given as

γ̂ =
4

(πz − 1)
2 − 1 (25)

The figure thus suggests, that the EDS approach will suffer
from penalties in both the high and low SNR regimes. In the
high SNR regime, the steepness of the curve will make the
estimate very sensitive to errors inz, while at low SNR, the
approximation error will have a bad effect on the estimation. It
should also be noted that the estimate of SNR resulting from
EDS approach is similar as that of MLE, if the estimation
is done using pilot sequence alone. Thus the EDS approach
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mentioned here will be treated as non-data aided scheme for
SNR estimation.

IV. CRAMER-RAO LOWER BOUNDS

In this section, we will derive the CRLB for the SNR
estimator. It can be noticed, that we can have different CRBs
for different cases discussed in the previous section. But,the
one that would really serve as a benchmark on the variance of
all estimators is from the FDA case, which is same as PDA
but uses all information in the packet as training sequence.
Since the unknown parameter is a vector i.e.,θ = [S N ]

T ,
thus the CRB for the SNR is given as [11]

CRB =
∂g(θ)

∂θ
I−1(θ)

∂g(θ)
T

∂θ
, (26)

whereg(θ) = S
N

and the Jacobian ofg(θ) is given as

Jg (θ) =

[

1

N

−S
N2

]

, (27)

and I(θ) is the Fisher information matrix (FIM) given as

[I (θ)]ij = −E
[

∂2Λ

∂θiθj

]

. (28)

The FIM for FDA is given as

I(θ) =

[

k
2(S+N)2

k
2(S+N)2

k
2(S+N)2

k
2(S+N)2 + k

2N2

]

, (29)

which gives the CRB from(26) as

CRBFDA =
4

k
(1 + γ)

2
. (30)

This bound has been plotted in Figures 2 and 3, which are
further discussed below.

V. SIMULATION RESULTS

In this section, we examine the normalized mean squared
error (normalized with respect to the square of the true value
of SNR) of the estimator using simulations for different cases.
Figures 2 and 3 show the NMSE averaged over 10000 trials for
different schemes discussed and for different packet lengths. It
is reasonable if we discuss two cases separately, i.e., packets
with short and long lengths, respectively. For the following
discussions, we are only considering the estimators with no
decision feedback (i.e., non-FDA cases).

A. Short length packet

Consider a packet with 8 pilot symbols and 28 data symbols.
The NMSE is plotted in Figure 2. It can be seen that the
best performance in terms of NMSE is given by the estimator
which utilizes both the data and pilot sequence together, i.e.,
the joint PDA-NDA estimator. The EDS approach does not
perform well and it can not give any estimation beyond a
very small range due to the limitations of the availability
of data (approximation error of the ensemble averages with
time averages for small data set is large). Thus for a short
length packet and with the availability of pilot, the joint data
estimation performs best and if the pilot is not available, then
the NDA MLE also gives better performance.
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Fig. 3. NMSE for g=100 and l = 900

B. Long length Packet

Here we consider a packet with long data sequence contain-
ing 100 symbols as pilot and 900 symbols being the actual
data. Thus it can seen from Figure 3, that the PDA estimation
performs the best as the NMSE remains smaller and almost
constant over the entire SNR range. MLE for the other two
cases suffers from the approximation errors in the low SNR
regime. The EDS method again shows bad behavior at high
SNR due to the steepness of curve from Figure 1. To do a fair
comparison, we assume that both the pilot and data symbols,
in the frame, are available to NDA and EDS approaches for the
estimation. It should also be noted that the EDS method also
uses the same approximation of high SNR as the NDA and
joint estimation approaches use, but the behavior of the curves
suggests that the approximation error in tanh(.) function used
to derive the ML based estimator is even more sensitive to the
value of SNR than the other approximation error. Thus EDS
approach performs better even for low SNR estimation. For
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high SNR estimation, the joint estimation scheme works the
best as expected. From the simulation curves, it could be seen
that an adaptive mode of SNR estimation can also be derived,
which consists of estimation from pilot only during the low
SNR regime having no approximation at all while using the
entire data packet for estimating high SNR values so that the
overall NMSE remains minimum over a wide range of SNR
values.

An important observation is that if we compare the NMSE
performance of Equation (16) with Equation (17) of [9], for the
NDA case, it can be noticed, that the estimators are different
not only due to different approximations used, but also due to
the known noise variance. In [9], the authors assume unit noise
spectral density, thus that approach does not work with any
other noise power. But our approach is strictly blind for both
the signal as well as noise power. The equivalence of CRB’s
from Equation (14) of [9] and (30) shows that for data-aided
estimation, the NMSE would achieve the same value for both
algorithms.

By using the FDA approach (decision feedback), which
utilizes the detected data, it can be seen that the performance
of the estimator is enhanced significantly and it reaches the
CRLB for the longer packet. Using this approach, we gain two
advantages: a larger data set and estimation using DA approach
which has no approximation errors. Theno errorsassumptions
is good in the context of Decode and Forward (DF) scenario,
since no errors is a precondition for forwarding the packet.
Sometimes, it is desired to choose the packet length such that
the NMSE should not exceed some specified value. A contour
plot of NMSE for SNR versus the packet length for FDA
case is shown in Figure 4. We observe that 5% error can be
achieved with 100 symbols.

VI. CONCLUSIONS

We have derived the MLEs and CRB for SNR for a BFSK
system assuming different degrees of data knowledge in a
packet. It is thus concluded that different scenarios leadsto

different results based on packet length, availability of pilot
sequence, and the region of SNR considered (low/high). If we
can not feedback detected symbols, (i.e., the FDA scheme),
then an adaptive scheme is suggested. However, for the Decode
and Forward cooperative relay applications, the FDA method
gives good results.
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