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Alternating Opportunistic Large Arrays in
Broadcasting for Network Lifetime Extension

Aravind Kailas and Mary Ann Ingram

Abstract—We propose a protocol for broadcasting in wireless
multihop networks that is based on a form of cooperative
transmission called the Opportunistic Large Array (OLA). An
SNR (“transmission”) threshold is used to define two mutually
exclusive sets of OLAs, such that the union of the sets includes all
the nodes in the network. The broadcast protocol then alternates
between the sets for each broadcast and is called Alternating
OLA with Transmission Threshold (A-OLA-T). Under A-OLA-
T, all participating nodes transmit with the same low power,
therefore the energies of the nodes in the network drain efficiently
and uniformly, extending the network life relative to broadcasts
that use simple OLA or non-alternating OLAs with a transmis-
sion threshold. In this paper, we optimize the A-OLA-T protocol
under the continuum assumption (very high node density).

Index Terms—Broadcast, cooperative transmission, oppor-
tunistic large arrays, wireless sensor networks.

I. INTRODUCTION

COOPERATIVE Transmission (CT) is an effective way
to achieve the benefits of an array transmitter (diversity

and/or array gain) by having two or more nodes cooperate to
transmit the same message to enhance the energy-efficiency
of the wireless system [1], [2]. There are a few works that
present the benefits of multi-node cooperation [3]-[6], and
a few others that specifically address the energy-efficiency
of cooperative broadcasts in wireless multi-hop networks
[7]-[11]. In this paper, we present a new “alternating sets”
broadcast strategy that uses a simple form of cooperative
transmission called the Opportunistic Large Array (OLA) [7].
The ‘Alternating OLA with a Transmission Threshold’ (A-
OLA-T) algorithm introduced in this paper is an extension of a
previous non-alternating OLA with a Transmission Threshold
(OLA-T) algorithm [8]. A-OLA-T ensures that all nodes in
a network contribute efficiently and equally to broadcasts,
thereby increasing the network longevity for multihop wireless
networks.

An OLA is a group of nodes that behave without coordina-
tion between each other, but naturally fire at approximately the
same time in response to energy received from a single source
or another OLA [7]. So in OLA-based schemes, each node
receives a superposition of signals transmitted by multiple
nodes. This is in stark contrast to non-cooperative schemes
where ideally each node receives a message from just one
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transmitter. All the transmissions within an OLA are repeats
of the same waveform; therefore the signal received from an
OLA has the same model as a multipath channel. As long
as the receiver, such as a RAKE receiver, can tolerate the
effective delay and Doppler spreads of the received signal
and extract the diversity, decoding can proceed normally
[11]. Even though many nodes may participate in an OLA
transmission, energy can still be saved because all nodes
can reduce their transmit powers dramatically and large fade
margins are not needed.

In the original OLA-based broadcasting scheme [7], or
‘Basic OLA,’ the first OLA comprises all the nodes that
can decode the transmission from the originating node; then
the first OLA transmits and all nodes that can decode that
transmission and that haven’t decoded that message before,
form the second OLA, and so forth. In [10], the authors
compared the power efficiency of OLA-based cooperative
broadcasting relative to non-cooperative broadcasting, both
with optimal power allocation, and showed that the former
saved at least 60% of the radiated power. One can control the
node participation in each ‘hop’ or OLA by using an explicit
power “transmission” threshold in the receiver, and this is
the OLA-T algorithm [8]. We note that the OLA-T concept
was proposed as the “Dual Threshold Cooperative Broadcast
(DTBC),” but not analyzed in [10]. Compared to Basic OLA,
OLA-T was shown in [8] to save up to a maximum of 32%
of the transmitted energy by limiting the number of nodes in
each OLA.

Unlike the OLA-based schemes above, A-OLA-T opti-
mizes groups of broadcasts instead of a single broadcast.
The transmission threshold is used to minimize the OLA
sizes while maintaining mutually exclusive sets of OLAs on
consecutive broadcasts. An important feature that all the OLA-
based schemes share is that no individual nodes are addressed.
This makes this protocol scalable with node density.

II. SYSTEM MODEL

For our analysis, we adopt the notation and assumptions
of [8], most of which were used earlier in [11]. Half-duplex
nodes are assumed to be distributed uniformly and randomly
over a continuous area with average node density ρ. The
originating node is assumed to be a point source at the
center of the given network area. We assume a node can
decode and forward (DF) a message without error when its
received signal-to-noise ratio (SNR) is greater than or equal
to a modulation-dependent threshold [11]. Assumption of unit
noise variance transforms the SNR threshold to a received
power criterion, which is denoted as the decoding or ‘lower’
threshold, τl. We note that the decoding threshold τl is not
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explicitly used in real receiver operations. A real receiver
always just tries to decode a message. If the message was
decoded properly, then it is assumed that the receiver power
must have exceeded τl. In contrast, the ‘Transmission’ or
‘upper’ threshold, τu is used explicitly in the receiver to
compare against the received SNR. This additional criterion
for relaying limits the number of nodes in each hop because a
node would relay only if it’s received SNR is less than τu. So
the thresholds, τl and τu, define a range of received powers
that correspond to the “significant” boundary nodes, which
form the OLA. While each boundary node in OLA-T must
transmit a somewhat higher power, compared to Basic OLA,
there is still an overall transmit energy savings with OLA-T
because of the favorable location of the boundary nodes. We
define the Relative Transmission Threshold (RTT) as R = τu

τl
.

For simplicity, the deterministic model [11] is assumed,
which means that the power received at a node is the sum of
the powers from each of the node transmissions. This implies
that signals received from different nodes are orthogonal.
The orthogonality can be approximated, for example, with
Direct Sequence Spread Spectrum (DSSS) modulation, RAKE
receivers and by allowing transmitting nodes to delay their
transmission by a random number of chips [12].

Continuing to follow [11], we assume a non-fading envi-
ronment and a path-loss exponent of 2. The path loss function
in Cartesian coordinates is given by l(x, y) = (x2 + y2)−1,
where (x, y) are the normalized coordinates at the receiver.
As in [11], distance d is normalized by a reference distance,
d0. Let power P0 be the received power at d0. As in [11],
the aggregate path-loss from a circular disc of radius r0 at an
arbitrary distance p > 1 from the source is given by

f(r0, p) =
∫ r0

0

∫ 2π

0

l(p − r cos θ, r sin θ)rdrdθ

= π ln
p2

|p2 − r2
0 |

. (1)

Let the normalized source and relay transmit powers be de-
noted by Ps and Pr, respectively, and the relay transmit power
per unit area be denoted by Pr = ρPr. The normalization
is such that Ps and Pr are actually the SNRs at a receiver
d0 away from the transmitter [8]. We assume a continuum
of nodes in the network, which means that we let the node
density ρ become very large (ρ → ∞) while Pr is kept
fixed. Using (1), the received power at a distance p from the
source, Pp is given by Pp = Prπ ln p2

|p2−r2
0|

. We note that non-
orthogonal transmissions in fading channels produce similarly
shaped OLAs [11], therefore the A-OLA-T concept should
work for them as well, although the theoretical results would
have to be modified.

Lastly, we define Decoding Ratio (DR) as D = τl/Pr,
named as such because it can be shown to be the ratio of
the receiver sensitivity (i.e. minimum power for decoding at
a given data rate) to the power received from a single relay
at the ‘distance to the nearest neighbor,’ dnn = 1/

√
ρ. If ρ is

a perfect square, then the dnn would be the distance between
the nearest neighbors if the nodes were arranged in a uniform
square grid. We note that D relates to node degree, K, [13]
according to K = π/D.

Fig. 1. The grey strips represent the transmitting nodes (that form the OLAs)
which alternate during each broadcast.

III. ALTERNATING OLA-T (A-OLA-T) FOR TWO SETS

For a fixed source and a static network, OLA-T causes
the same subset of nodes to participate in all broadcasts. Let
“network lifetime” be defined to be the length of time before
the first node dies (“death” happens when the batteries die).
If we assume that broadcasts are the only transmissions, then
we observe that OLA-T has no advantage over Basic OLA
in terms of network lifetime, even though OLA-T consumes
less total energy in a single broadcast. In the next section,
we show how Alternating OLA-T (A-OLA-T) improves the
network lifetime compared to Basic OLA and OLA-T.

The idea of A-OLA-T is that the nodes that do not partici-
pate in one broadcast make up the OLAs in the next broadcast.
Fig. 1 illustrates the concept. The grey areas on the left of
Fig. 1, are the OLAs in “Broadcast 1,” which is an OLA-
T broadcast, while the grey areas on the right are the OLAs
in “Broadcast 2.” Ideally these two sets of OLAs have no
nodes in common and their union includes all nodes. A-OLA-
T extends the network life because each node participates only
in every other broadcast.

Broadcast 1 fixes the radii for Broadcast 2. From [8],
it is learned that a necessary and sufficient condition for
Broadcast 1 success with a constant transmission threshold
is the inequality,

2 ≥ exp
(D

π

)
+ exp

(−DR
π

)
. (2)

We observe that when R → ∞, (2) becomes the condition for
successful Basic OLA broadcast [11]:

2 ≥ exp
(D

π

)
. (3)

Inequality (2) can be re-written as a lower bound on R:

Rlower bound = (−1)

{
π ln

[
2 − exp

(D
π

) ]
D

}
. (4)

We note that the A-OLA-T extension of OLA-T will not work
for all R satisfying (4). Next, we will show that a necessary
and sufficient condition for Broadcast 2 to also be successful
is an upper bound on R.
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Fig. 2. Illustration of the A-OLA-T Algorithm with (a) admissible R, (b)
inadmissible R.

A. Necessary and Sufficient Condition for Broadcast 2 Success

Figs. 2(a) and (b) contain illustrations of successful and
unsuccessful A-OLA-T broadcasts, respectively. These figures
show how to ensure that both broadcasts are sustaining. The
upper parts of both drawings correspond to Broadcast 1, and
the outer and inner OLA radii for the k-th OLA ring are
labeled ro,k and ri,k , respectively. The lower parts of both
drawings correspond to Broadcast 2, and the outer and inner
OLA radii for the k-th OLA ring are relabeled vo,k and vi,k,
respectively. The initial conditions for the second broadcast are

vi,1 = 0, and vo,1 =
√

Ps

τu
, where vo,1 was fixed in Broadcast

1. In Fig. 2(a), the first OLA during Broadcast 1 is denoted by
OLA 1,1 and is defined by the radii pair, ri,1 and ro,1. On the
other hand, the first OLA during Broadcast 2 is denoted by by
OLA 1,2 and is the circular disk of radius vo,1. Let ṽo,2 be the
decoding range of OLA 1,2 during Broadcast 2. The key idea is
that ṽo,2 must be greater than ri,2. In Fig. 2(a), this inequality
is satisfied, while in Fig. 2(b), it is not. More generally, the
network designer just needs to check that the decoding range,
ṽo,k+1, of the k-th OLA in Broadcast 2 is always greater
than ri,k+1, for all k. Alternatively, we can compute the
received power at ri,k+1 and confirm that it is greater than the
minimum. Using vo,k = ri,k and vi,k = ro,k−1, we express
this as

Pr [f(ri,k, ri,k+1) − f(ro,k−1, ri,k+1)] ≥ τl. (5)

Intuitively, we observe that as R becomes very large, the
OLAs during Broadcast 1 become larger and the OLAs of
Broadcast 2 become relatively smaller, as shown in Fig. 2(b).
As a result, the sets of nodes that did not transmit during
Broadcast 1 (or the OLAs during Broadcast 2), eventually
become so small that their decoding range (for OLA 1,2, this
is indicated by the dashed line in Fig. 2(b)) cannot reach the
next Broadcast 2 OLA to sustain propagation, i.e., ṽo,2 < vi,2.
In other words, for a very high value of R, the k-th OLA in
Broadcast 2 may be so weak that no nodes between vi,k+1

and vo,k+1 can decode the signal. When this happens, OLA
formations die off during Broadcast 2 and A-OLA-T fails to
achieve network broadcast. Thus, it makes sense for R to have
an upper bound.

Using the initial conditions ro,1 =
√

Ps

τl
and ri,1 =

√
Ps

τu
,

recursive formulae for the k-th OLA are given by [8]

r2
o,k =

β(τl)r2
o,k−1 − r2

i,k−1

β(τl) − 1
, r2

i,k =
β(τu)r2

o,k−1 − r2
i,k−1

β(τu) − 1
.

(6)
After substituting (6) into (5), and simplifying, we can rewrite
the condition in (5) to show the explicit dependence on the
Broadcast 1 radii:

0 ≤ β(τl)r2
i,k − r2

o,k−1 − (β(τl) − 1) r2
i,k+1

β(τl) − 1
. (7)

In [8], the closed-form expressions for (6) were found to be

r2
o,k =

η1A
k−1
1 − η2A

k−1
2

A1 − A2
, r2

i,k =
ζ1A

k−1
1 − ζ2A

k−1
2

A1 − A2
, (8)

where

A1 = α(τl) − α(τu), A2 = 1, A1 − A2 �= 0, (9)

ηi =
{

[Ai + α(τu)]
Ps

τl
− α(τl)

Ps

τu

}
, (10)

ζi =
{

[1 + α(τu)]
Ps

τl
+ [Ai − α(τl) − 1]

Ps

τu

}
, i ∈ {1, 2},

(11)

α(τ) = [β(τ) − 1]−1 , β(τ) = exp
[
τ/(πPr)

]
. (12)

Substituting the expressions for ro,k and ri,k from (8)-(11)
into (7), and collecting the A1 and A2 terms, we get

Ak−1
1 Ω − Ak−1

2 Π ≥ 0. (13)

where

Ω =
(
α(τl) + 1

)
ζ1 − α(τl)η1A

−1
1 − ζ1A1, and (14)

Π =
(
α(τl) + 1

)
ζ2 − α(τl)η2A

−1
2 − ζ2A2.

Using A2 = 1 and the expressions for η2 and ζ2, we get
Π = ζ2 − η2 = 0, which, when applied to (13) along with
A1 > 0, the inequality in (13) may be simplified to Ω ≥ 0.
While not obvious from Ω ≥ 0, this inequality implies an
upper bound on R. The closed-form expression for the upper
bound on R is derived in the Appendix, and is given by

Rupper bound =
π

D ln

[
β(τl) + 1 +

√(
β(τl) + 1

)2 − 4

2

]
,

(15)
where β(τl) is defined in (12). We observe that (15) depends
exclusively on τl and D, and not on the source power Ps.

We remark that it is not necessary to assume the same
R for both broadcasts or even for different levels within a
single broadcast [8]. With the flexibility of level-dependent
transmission thresholds (τk

u or Rk), a designer may be able
to make the decoding ranges in Broadcast 2 match up exactly
with the boundaries in Broadcast 1, and thereby save more
transmit energy.
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Fig. 3. Relative Transmission Threshold (R), in dB, Versus Decoding Ratio
(D) for A-OLA-T. The D corresponding to the intersection of the two curves
is the D(A)

max.

B. Discussion

Fig. 3 is a plot of the upper and lower bounds for relative
transmission threshold, R, in dB for A-OLA-T, as a function
of the decoding ratio, D. First, we observe that as D decreases,
the difference between the upper and lower bounds increases.
As an example, for a small decrease in D from 1.2 to 1, the
range of R increases from [2.1, 2.4] to [1.7, 2.8]. This has
two reasons. Decreasing D could be done by increasing the
Pr, which enables Broadcast 1 to be successful with more
slender OLAs. This corresponds to a decrease of the lower
bound. Fatter Broadcast 2 OLAs more easily reach across the
next pair of boundaries and so this increases the upper bound.
Next, decreasing τl also decreases D. Decreasing τl decreases
the lower bound, because a lower value of τl corresponds to
a lower SNR requirement at the receiving node, and so in
order to meet this power requirement, the OLAs can afford to
have fewer nodes during Broadcast 1. OLAs during Broadcast
1 become thinner but more powerful, and the OLAs during
Broadcast 2 grow thicker. This is implied by an increase in
the upper bound.

We also observe from Fig. 3 that the upper and lower
bounds converge as D increases. This also implies an upper
bound on D for A-OLA-T, D(A)

max = τl

Pr
(A)
min

, where Pr
(A)

min is

the minimum value of Pr for a given τl. We were not able
to obtain an exact value of D(A)

max, however, using numerical
analysis we found D(A)

max ≈ 1.27. We note from (3) that D has
a higher upper bound for Basic OLA, D(O)

max = π ln(2) ≈ 2.18.
For D > D(A)

max, network broadcast fails for A-OLA-T because
the OLAs die out during Broadcast 2. For A-OLA-T, we have
from D(A)

max that Pr
(A)

min 
 0.78τl. From (3), the minimum Pr for

Basic OLA, denoted by Pr
(O)

min , is Pr
(O)

min = 0.46τl. We observe
that A-OLA-T requires less than double the power of Basic
OLA, because it uses border nodes.

Next, we compute the “broadcast life” extension of A-OLA-
T compared to Basic OLA. By broadcast life, we mean the
lifetime of the network if only broadcasts were transmitted.
If A-OLA-T and Basic OLA use the same Pr, then A-
OLA-T doubles the network life compared to Basic OLA.
However, this is not a fair comparison since Basic OLA
can achieve successful broadcast at a lower Pr. Since for a

given protocol, all nodes use the same amount of power in
broadcasts, we assume the broadcast life of the network is
inversely proportional to the time-averaged power transmitted
by each node. For Basic OLA, the time-averaged power is

Pr
(O)

. For A-OLA-T, the time-averaged power is Pr
(A)

2 , since
each node transmits only every other broadcast. The ratio of

broadcast lives of Basic OLA to A-OLA-T is therefore 2Pr
(O)

Pr
(A) ,

and the ‘Fraction of Life Extension’ (FLE), may be defined
as

FLE = 2
Pr

(O)

Pr
(A)

− 1. (16)

FLE can be evaluated for any powers that satisfy Pr
(A) ≥

0.78τl and Pr
(O) ≥ 0.46τl. However, when the the minimum

powers are substituted, then (16) becomes

F̂LE = 2
Pr

(O)

min

Pr
(A)

min

− 1 = 2
D(A)

max

D(O)
max

− 1 ≈ 0.17. (17)

This means that A-OLA-T can offer a 17% life extension when
both protocols are optimized.

IV. CONCLUSIONS

In this paper, we proposed and analyzed a novel same-
source broadcast strategy that extends the life of a wireless
ad hoc or sensor network by alternating between mutually
exclusive sets of opportunistic large arrays (OLAs) in two
consecutive broadcasts. In this strategy, all participating nodes
transmit with the same power. We showed that A-OLA-T
extends the network life by a maximum of 17% relative to
Basic OLA when both protocols operate in their minimum
energy configuration. Further, when A-OLA-T is compared
to OLA-T, the battery-life of the nodes is doubled. The key
parameter was the transmission threshold, which was assumed
constant for the whole network. Potential extensions of this
work include an analysis of A-OLA-T for more than two
OLA sets, finite densities of nodes, other path-loss exponents,
fading environments, radiated versus non-radiated energy, and
for practical synchronization and SNR estimation.
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APPENDIX

The condition for Broadcast 2 OLA formations to propagate
throughout the network is given by Ω ≥ 0 and (14). To deter-
mine the values that make Ω = 0, substitute the expressions
for η1 and ζ1 from (10) and (11), respectively, and get

0 =
(
α(τl) + 1

)(
1 + α(τu)

)[
Ps

τl
− Ps

τu

]
− α(τl)α(τl)

[
Ps

τl
− Ps

τu

]
A−1

1

(
1 + α(τu)

)[
Ps

τl
− Ps

τu

]
A1.

We assume τl − τu > 0, and Ps �= 0; therefore, we can
divide out the square bracketed term. Further simplification

results in 0 = A2
1 −

([
α(τu)

]2 + 1
)

A1 +
[
α(τu)

]2
. This
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equation is quadratic in A1, and the roots are A1 =
[
α(τu)

]2
and A1 = 1. Recall that A1−A2 is a factor in the denominator
of the closed-form expressions for the OLA-T radii as given in
(8). So, during the derivation for Ω, we had assumed that A1−
A2 �= 0. Since A2 = 1, we must take the root A1 =

[
α(τu)

]2
.

We re-substitute the expression for A1 in (9) to get
[
β(τu)

]2−(
β(τl)+1

)
β(τu)+1 = 0, which is quadratic in β(τu), with

roots r1,2 = (0.5)
[
β(τl)+1±

√(
β(τl) + 1

)2

− 4
]
. Without

loss of generality, we assume the larger root is r1. Each root
implies a different relationship between τl and τu, which leads
to two values of R where Ω = 0. The greater of the two values
is the upper bound on R. So, β(τu) = r1 ⇒ τu = Prπ ln(r1),
and the upper bound is given by Rupper bound = π ln(r1)

D .
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